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Abstract. We investigate the collective properties of particles in a 2D experimental system which consists of
a bi-disperse mixture of colloidal particles confined at an air/water interface. We find a direct correlation
between structure and dynamical heterogeneities in this system: particles belonging to locally ordered
structures have lower potential energy and are slower than other particles. In a more general way we
show that particles with high potential energy are dominating the dynamics especially in the α-relaxation
regime.

1 Introduction

The microscopic processes responsible for solidification
of supercooled fluids near the glass transition are still
poorly understood. Dynamic heterogeneities are believed
to be a key feature in the understanding of the relax-
ation behavior near structural arrest. They are commonly
evoked to explain intriguing properties of the dynamics
like non-exponential relaxation functions and two-time
relaxation [1–6]. Great progress in their study has been
made thanks to direct real space observation of colloidal
systems and the existence of populations of fast and slow
particles forming clusters of a few tens of fast particles
has been shown for instance in [7, 8]. Dynamical hetero-
geneities are also evoked to explain diverging length scales
upon cooling as their characteristic length scale is believed
to grow when approaching the glass transition [1,3,9,10].
Many attempts have been made to find a link between
dynamical heterogeneities and structures [11–17].

Based on numerical simulations of hard disks, Tanaka
et al. [18,19] have observed a correlation between medium-
range crystalline order (MRCO) and clusters of slowest
particles in the α-relaxation regime. Using MD simula-
tions, Matharoo et al. [20] have shown low mobility of
clusters of low-potential-energy molecules for water in the
supercooled phase. Yet another approach is to analyze the
predictability of the long time dynamics of the particles
from their short-time behavior. Widmer-Cooper and Har-
rowell introduced the iso-configurational ensemble, a set
of initial situations with the same positions but different
momenta of the particles and have tried to show a con-
nection between dynamical properties of a particle with
its local environment [21,22].
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While most of these studies of dynamical hetero-
geneities have been performed by simulations, experimen-
tal work in direct space remains still rare [7,8,23]. In this
letter we present results from an experimental study of
a 2D colloidal system which consists of a binary mixture
of super-paramagnetic particles interacting via a dipole-
dipole potential. The strength of the interaction is fixed
by an external magnetic field, so direct observation of the
particle positions provides knowledge of the potential en-
ergy for each particle. We show that locally symmetric
structures have slower dynamics and regions of slow dy-
namics which are visible as dynamical heterogeneities have
lower potential energy at the same time.

2 Experimental setup

Our experimental setup has been described elsewhere [24].
The system consists of a suspension of two kinds of spher-
ical super-paramagnetic colloidal particles A and B with
different diameters (dA = 4.5µm, dB = 2.8µm) and mag-
netic susceptibilities (χA ≈ 10 · χB). Due to their high
mass density of ρm ≈ 1.5 g/cm3, particles are confined
by gravity to the water-air interface formed by a pending
water drop suspended by surface tension in a top sealed
cylindrical hole (6 mm diameter, 1 mm depth) in a glass
plate, see fig. 1. A magnetic field H applied normal to the
water-air interface induces a magnetic moment M = χH

in each particle leading to a repulsive dipole-dipole pair
interaction.

The control parameter Γ which quantifies the strength
of the interaction is defined by the ratio between average
magnetic interaction energy and thermal energy

Γ =
µ0

4π

H2 · (πρ)(3/2)

kBT
(ξ · χB + (1 − ξ) · χA)2, (1)
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Fig. 1. Super-paramagnetic colloidal particles (not to scale)
confined at a water-air interface due to gravity. A tunable mag-
netic field induces a repulsive dipole interaction between the
particles.

where ρ is the 2D area density of the particles, ξ denotes
the relative fraction of small particles ξ = NB/(NA+NB),
where NA, NB are the numbers of big and small particles
in the field of view. Particles are visualized by video mi-
croscopy using an 8-bit CCD camera. The field of view
has a size of ≈ 1mm2 containing typically 3 × 103 parti-
cles, while the whole sample contains up to 105 particles.
Standard image processing provides size, number, and po-
sitions of the colloids with a resolution better than 50 nm.
A computer-controlled syringe driven by a micro stage
controls the volume of the droplet to reach a completely
flat surface.

To achieve a horizontal interface, the inclination of the
whole experimental setup is controlled actively by micro-
stages with a resolution of ∆α ≈ 1 µrad. Trajectories of
all particles in the field of view can be recorded over sev-
eral days providing information on all relevant time and
length scales. Furthermore, the pair interaction can also
be directly controlled over a wide range. In this geometry
the dipolar pair potential of particle i is given by

Ei
p(r) =

µ0

8π

N∑

j=1

χi · χj · H
2

r3
ij

, (2)

where j runs over all other particles, rij is the distance be-
tween particle i and j and χi the magnetic susceptibility
of the particle i. In refs. [25–27] we described that our sys-
tem has local crystalline but no long range order [28] and
shows glassy dynamics. The crystallites found are mainly
of two kinds. One has hexagonal symmetry and is made
only of big particles which corresponds to the crystalline
order observed in the solid phase for the mono-disperse
system. The other has square symmetry and is composed
of big particles at the corners and a small one in the center.

For the given mixing ratio the square crystallite might
be seen as the 2D analogon of locally favored struc-
tures [15,16] found in simulation and colloidal gels in 3D.
Both types of 2D-crystallites are able to build up some
compact grains made of several cells having identical ori-
entation [25, 28]. Those crystalline grains are compatible
with the crystal lattice being the ground state configura-
tion for the given mixing and susceptibility ratio where

the ground state configurations were calculated by lattice
sums [29] and genetic algorithms [30]. Even when the sys-
tem is quenched abruptly from the fluid phase into the
amorphous solid state (Γ = 1 to Γ = 390) small crystal-
lites with square and hexagonal symmetry appear. It was
suggested in simulations [27] that these locally ordered
structures have lower dynamics than the disordered parts
of the sample.

3 Dynamics of locally favored structures

In order to detect the hexagonal structures in the quasi-
equilibrium sample studied here, we use a bond angle de-
viation parameter a which quantifies the deviation from
an average angle between two adjacent bonds,

a =

√√√√ 1

Nnn

Nnn∑

j=1

(Θ
k̂ij

− Θ)2 ·
1

Θ
, (3)

where Θ
k̂ij

is the angle between two successive bonds

formed by particles i and k, and i and j, respectively. Θ is
the average of Θ

k̂ij
over all the bonds formed by particle

i and the nearest neighbors. As in [25] a second criterion
is necessary and we use the bond length deviation param-
eter b

b =

√√√√ 1

Nnn

Nnn∑

j=1

(lij − l)2 ·
1

l
, (4)

where lij is the length of the bond between particle i and

particle j and l is the average of lij over all nearest neigh-
bors. For a small particle to belong to a square structure
we used the criteria a < 0.1, b < 0.1 and that its four
nearest neighbors must be big particles. For the hexago-
nal structure the six nearest neighbors must be big par-
ticles. This combination of criteria is quite natural and
has the advantage to select particles which are intuitively
selected by eye and discards the others. In order to study
the influence of the crystallite’s symmetry on the dynam-
ics we watch out for particles which satisfy both criteria
for a and b during at least 10% of the total duration of
the experiment. This condition is largely flexible enough
for a particle to eventually fluctuate around its symmetric
configuration.

Particles escaping from their cages are often believed
to be responsible for the α-relaxation seen in the mean-
square displacement (MSD). In [31] we have shown that
this hopping-out-of-cage dynamics of individual particles
was possibly hidden by some collective unidirectional mo-
tion of particles with their cage. Therefore we investigated
the displacement of a colloid with respect to the average
displacement of its nearest neighbors. This cage-relative
position is defined as

r
i
CR(t) = r

i(t) − (r i
nn(t) − r

i
nn(0)), (5)

where i is the index of the particle, r
i(t) its position

at time t and r
i

nn(t) is the position of the center of
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mass of the initially (at t = 0) nearest neighbors: r
i

nn =
1

Nnn

∑Nnn

j=1 (r j(t)−r
j(0)), where j runs over the indices of

the nearest neighbors defined by Voronoi tessellation and
Nnn is the number of nearest neighbors. This cage-relative
position and associated cage-relative MSD have been suc-
cessfully used in simulations [32] and experiments [33] of
crystallizing systems to determine the melting tempera-
ture in 2D. In [31] we used it to discriminate between cage
motion and particles motion relatively to their cage near
the glass transition. Thanks to this, a cage dynamics has
been visualized in the amorphous solid phase. Particles
first explore the environment made up by the surround-
ing neighbors. Later, in the plateau regime of the MSD, a
few particles start to make some hopping processes, a phe-
nomenon which becomes more frequent in the α-regime. In
addition, particles also move collectively with their cages,
especially in the plateau and α-relaxation regimes.

In fig. 2 we have plotted the cage-relative mean-square
displacement (CR-MSD) of both small (panel a) and big
(panel b) particles selected according to their affiliation to
a given crystalline cell type for Γ = 338. For this value of
the control parameter Γ , we name the system an amor-
phous solid. To do so (and since we cannot measure TG by
the viscosity in a 2D system) we have analysed the low-
frequency shear modulus µ of the colloidal ensemble and
determined the transition temperature in units of Γ be-
tween amorphous solid and fluid by the extrapolation to a
zero-frequency shear modulus. The system is fluid µ ≃ 0
for Γ ≤ 169 and solid µ > 0 for Γ ≥ 242 [34].

In the short-time regime and the beginning of the
plateau the two curves superimpose while at the end of
the plateau the CR-MSD of small particles belonging to a
square structure is clearly smaller than the average curve.
So, with respect to their cage, small particles in the mid-
dle of a square structure move less than the others. This
is the same for big particles belonging to the shell of a
hexagonal structure and even more pronounced for those
being the center of a hexagon. Particles in a high symme-
try configuration of the local environment, where we know
that the global structure with similar global stoichiometry
corresponds to the energetic ground state [29, 30], are on
average less mobile.

The difference in the amplitude of the CR-MSD be-
tween small a) and and big b) particles was suggested
to be interpreted in terms of decoupling of the dynamics
between both species. In [35,36] this decoupling is investi-
gated for highly asymmetric systems like colloid-polymer
mixtures or soft mixtures like star-star-polymers where de-
pletion forces play a crucial role. However, in [37] we have
shown that our binary mixture is negative non-additive
and depletion forces do not play any role. According to [5]
the investigation of the classical MSD shows that the dif-
ferent mobilities scale directly with the size ratio of the
species which is dA/dB = 1.6 in the present experiment.
Late in the the α-regime the ratio in dynamics increases
slightly to a factor of about 2. This increase is slightly
stronger visible (about 2.3) in the CR-MSD and can be
interpreted as follows: small particles sometimes perform
a jump out of the cage (see also fig. 3), whereas the big

Fig. 2. (Color online) a) Lin-log plot of the root cage-relative
mean-square displacement (CR-MSD) for small particles in dif-
ferent local configuration at Γ = 338. b) Same for the big
particles. c) Color code for the local configurations; black cor-
responds to the average over all small particles a) and all big
particles b). Red corresponds to local square order with a) a
centered small particle and b) four big particles at the corner.
Green corresponds to local hexagonal order (it appears only for
the big particles) with blue being the center particle. The noise
in blue curve is much larger, since only ∼ 1% of the particles
contribute to this mean value. Particles in the center of locally
ordered structures have a smaller cage-relative mean-square
displacement.

ones usually perform an intra-cage hopping process as rare
event [31]. This again underlines the sensitivity of the CR-
MSD to local mobilities but in our opinion should not be
interpreted as decoupling in the dynamics between big and
small particles, even if relaxation processes in the aging
regime should turn out to be slightly different. To date, in
the α-regime of the classical MSD, we cannot distinguish
between diffusive or sub-diffusive behaviour and Mermin-
Wagner fluctuations known from 2D crystals [38]. Note,
that the amplitude of the CR-MSD is about 1.8µm (big)
and 3µm (small) in the inflection point, much less than
the typical inter-particle distance of 21µm (big-big) or
16µm (big-small).
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Fig. 3. (Color online) Cage-relative trajectories for big particles in green and small particles in red at Γ = 338. The intensity
of the color is proportional to the potential energy of the particle averaged over the duration of the experiment (t = 80000 s).

4 Local dynamics versus potential energy

Now we focus on the mobility of all particles. Figure 3
shows the cage-relative trajectories of the big and small
particles in green and red, respectively, for the total dura-
tion of the experiment (t = 80000 s). We observe that
the dynamics with respect to the nearest neighbors is
clearly heterogeneous and that in some large areas parti-
cles indeed perform some hopping processes. Plotting the
trajectories for equivalent time windows shows that the
heterogeneous patterns are static for measurements with
Γ ≥ 242. This is true for systems in the amorphous solid
state which have been equilibrated for several days up to
two weeks (not exactly the same waiting time for different
measurements due to technical reasons) at a given effective
temperature Γ . On the given time scale we do not observe
temporal-spatial fluctuations of the patterns as has been
reported in [7,8,39] for 3D systems or 2D systems [40] close
to the glass transition. Here, we have to discuss the acces-
sible time scales in our systems. The measurements cover
five decades in time, a value which has to be compared
with the short-time diffusion coefficient D0 = 0.11µm2/s
leading to a Brownian time (to diffuse the own diameter)
of τB = 50 s for the big particles. Our accessible time scale
is short compared to solid state experiments [41] but has
to be related to the reduced stiffness of soft-matter sys-
tems versus solid-state systems which scales to be smaller
by 15–18 orders of magnitude in 3D and still 10–12 orders
of magnitude in 2D. It is this softness which “compresses”
the physical processes in time.

The brightness of the trajectory plotted for individual
particles in fig. 3 is proportional to the potential energy
of the particle itself averaged over the duration of the ex-
periment. To calculate the potential energy we have used
eq. (2) but only neighbors closer than 120µm are consid-
ered. This cutoff value corresponds to about six times the
average inter-particle distances and the contribution of a
particle outside this cutoff radius to the energy is less than
0.5%. It is important to note that the spatially heteroge-
neous distribution of the potential energies is static on the
experimental time scale, too, which is in the α-relaxation
regime. The system is not able to relax regions of high and
low potential energy to a mean value within the given ex-
perimental time scale (including the waiting time), even
if the full width half-maximum of the energy histogram
(black curve in fig. 4) is about ±10% of the mean value
for the small and ±5% for the big particles 1. Therefore the
spatial patterns of the energy distribution are very similar
in the beginning and the end of the experiment. This is the
reason why we averaged the potential energy of the par-
ticles for the duration of the experiment since we did not
want to select a special time window. The presence of both
dynamical and structural (in terms of potential energy)
heterogeneities is obvious. More interestingly it is also ev-
ident that there is a significant correlation between them.

In order to quantify this connection between dynami-
cal heterogeneities and structural quantities, we have plot-
ted in fig. 4 a histogram of the number of particles per

1 In a mono-disperse crystallizing sample this variation is less
than 1%.
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Fig. 4. (Color online) Number of particles N(EP ) per unit
energy averaged over the total duration of experiment in black.
Average cage-relative radius of gyration 〈Rgyr(Ep)〉 per unit
energy is in red. Small particles with high potential energy have
a larger cage-relative radius of gyration of their trajectories.

potential energy (black curve) and the radius of gyration
of the cage-relative trajectory as function of potential en-
ergy (red curve). The radius of gyration of the trajectories
is defined as follows [42]:

R i
gyr =

√√√√ 1

Nt

texp∑

t=0

(r i(t) − r
i
CM)2, (6)

where t runs over all experimental points, Nt is the num-
ber of experimental points, and texp the duration of the
experiment. r

i
CM is the center of mass of the cage-relative

trajectory r
i
CM = 1

Nt

∑texp

t=0 r
i(t). We average the cage-

relative radius of gyration 〈Rgyr(Ep)〉 for all particles hav-
ing their potential energy between Ep and Ep + ∆Ep. We
have also plotted the number of particles per unit of po-
tential energy to indicate an estimation of the accuracy of
the statistics. We see that for small particles 〈Rgyr(Ep)〉
clearly increases with potential energy. Nevertheless, this
correlation is not obvious for the big particles and the dis-
tribution of 〈Rgyr(Ep)〉 is rather flat. We interpret this
as follows: Small particles are sitting in deep potential
minima and the thermal fluctuations within the cage are
small, such that the motion of the potential minimum due

Fig. 5. (Color online) Same quantities as in fig. 4 for Γ = 169
in the supercooled state calculated for 1000 s. This time corre-
sponds to the inflection point of the mean-square displacement.
For longer times this correlation is less visible.

to structural relaxations is clearly visible in their cage-
relative mean-square displacement. Structural relaxations
are supposed to be driven by decreasing the level of the
potential minima towards the equilibrium configurations.
The large radius of gyration of the small species is domi-
nated by the reorganization of the local environment forc-
ing the small particle to follow the motion of the local
energetic minimum. On the other hand, the average po-
tential minimum of large particles is about 5.5 times larger
compared to the small ones (see color code of fig. 3 or
maximum of the energy histogram in fig. 4). Therefore
the curvature of the potential minimum has to be smaller.
Big particles are allowed to explore the space around the
local equilibrium position within the cage to a high ex-
tend, the Debye-Waller factor is large compared to the
motion of the potential minima. This individual motion
superimposes the effect seen for the small particles.

If we analyze data at lower interaction strength (higher
effective temperatures) in the fluid state (where the zero-
frequency shear modulus vanishes [34]) the dynamic be-
havior is qualitative different. In the fluid phase, for Γ =
51 the sample shows homogeneous dynamics. For Γ = 110
dynamical heterogeneities are visible only on short time
scales and correlations between structure and dynamics
are detectable only in the β-relaxation regime and dimin-
ish for longer times. Approaching the transition a correla-
tion between structure and dynamics can be identified for
longer time scales. Figure 5 shows the potential-energy dis-
tribution and radius of gyration analysed at Γ = 169 for
1000 s for small particles. This time window corresponds
to the inflection point in the mean-square displacement.
For longer time windows up to 20000 s this correlation di-
minishes indicating diffusive dynamics on long time scales
and/or spatial-temporal fluctuations in the pattern of the
dynamical heterogeneities. Since the average inter-particle
distance is 16 µm, one can identify a few colloids with high
potential energy to escape out of their cage on this rela-
tively short time scale.
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5 Conclusions

In conclusion, we have shown evidence for a correlation
between dynamical and structural heterogeneities in the
supercooled fluid and amorphous solid state (in terms of
zero-frequency shear modulus) and showed that regions
of fast and slow moving particles are static for the time
scale investigated in this experiment. Particles belonging
to a structure with local symmetry such as squares for the
small or hexagons for the big particles, respectively, have
on average a slower dynamics with respect to their cage.
The locally ordered structures correspond to the ground
state configurations of the system for the given mixing
and susceptibility ratio. The mobility of small particles is
correlated to the potential energy —particles with high
potential energy are more mobile than those with low en-
ergy. This is true for all analysed data in the amorphous
solid state at Γ = 242, 338, 390. In the fluid phase for
Γ = 51, 110 the dynamics is (almost) homogeneous. Ap-
proaching the transition at Γ = 169 a correlation of po-
tential energy and fast moving particles can be found in
a time window of 1000 s. For longer times this correlation
diminishes due to the diffusive behavior of the sample.

Attention must be paid to the fact that the link we
have found implies the dynamics of particles with respect
to their cage. In [31] we have seen that the usual behav-
ior of cage dynamics observed in 3D systems is the same
as that one observed in this 2D system when we investi-
gate the behavior of particles with respect to their initially
nearest neighbors. This may be due to long-wavelength
density fluctuations which are known in 2D crystals [38]
but yet to be found in 2D amorphous solids.
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